Python - 删除 DataFrame 中缺失的 (NaN) 值
要删除缺失值,即NaN值,请使用该dropna()方法。首先,让我们导入所需的库-
import pandas as pd
读取CSV并创建一个DataFrame-
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\CarRecords.csv")
使用dropna()删除缺失值。NaN将在dropna()使用后显示缺失值-
dataFrame.dropna()
示例
以下是完整代码
import pandas as pd #读取csv文件 dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\CarRecords.csv") print("DataFrame with some NaN (missing) values...\n",dataFrame) #计算DataFrame中的行和列 print("\nNumber of rows and column in our DataFrame = ",dataFrame.shape) #删除缺失值 print("\nDataFrame after removing NaN values...\n",dataFrame.dropna())输出结果
这将产生以下输出-
DataFrame with some NaN (missing) values... Car Place UnitsSold 0 Audi Bangalore 80.0 1 Porsche Mumbai NaN 2 RollsRoyce Pune 100.0 3 BMW Delhi NaN 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh 80.0 6 Audi Mumbai NaN 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0 Number of rows and colums in our DataFrame = (9, 3) DataFrame after removing NaN values ... Car Place UnitsSold 0 Audi Bangalore 80.0 2 RollsRoyce Pune 100.0 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh 80.0 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0