查找最大边不相交路径数的 C++ 程序
这是一个C++程序,用于查找边不相交路径的最大数量,这意味着两个顶点之间的最短子集路径或最大流量。
算法:
Begin function bfs() returns true if there is path from source s to sink t in the residual graph which indicates additional possible flow in the graph. End Begin function findDisPath() is used to return maximum flow in given graph: A) Initiate flow as 0. B) If there is an augmenting path from source to sink, add the path to flow. C) Return flow. End
示例代码
#include#include #include #include #define n 7 using namespace std; bool bfs(int g[n][n], int s, int t, int par[]) { bool visit[n]; memset(visit, 0, sizeof(visit)); queue q; q.push(s); visit[s] = true; par[s] = -1; while (!q.empty()) { int u = q.front(); q.pop(); for (int v=0; v 0) { q.push(v); par[v] = u; visit[v] = true; } } } return (visit[t] == true); } int findDisPath(int G[n][n], int s, int t) { int u, v; int g[n][n]; for (u = 0; u < n; u++) { for (v = 0; v < n; v++) g[u][v] = G[u][v]; } int par[n]; int max_flow = 0; while (bfs(g, s, t,par)) { int path_flow = INT_MAX; for (v=t; v!=s; v=par[v]) { u = par[v]; path_flow = min(path_flow, g[u][v]); } for (v = t; v != s; v = par[v]) { u = par[v]; g[u][v] -= path_flow; g[v][u] += path_flow; } max_flow += path_flow; } return max_flow; } int main() { int g[n][n] = {{0, 6, 7, 1}, {0, 0, 4, 2}, {0, 5, 0, 0}, {0, 0, 19, 12}, {0, 0, 0, 17}, {0, 0, 0, 0,}}; int s=0,d=3; cout << " There exist maximum" <<" "<< findDisPath(g, s, d)<< " 从边缘不相交的路径 " << s <<" to "< 输出结果 There exist maximum 3 edge-disjoint paths from 0 to 3