在Keras中CNN联合LSTM进行分类实例
我就废话不多说,大家还是直接看代码吧~
defget_model(): n_classes=6 inp=Input(shape=(40,80)) reshape=Reshape((1,40,80))(inp) #pre=ZeroPadding2D(padding=(1,1))(reshape) #1 conv1=Convolution2D(32,3,3,border_mode='same',init='glorot_uniform')(reshape) #model.add(Activation('relu')) l1=LeakyReLU(alpha=0.33)(conv1) conv2=ZeroPadding2D(padding=(1,1))(l1) conv2=Convolution2D(32,3,3,border_mode='same',init='glorot_uniform')(conv2) #model.add(Activation('relu')) l2=LeakyReLU(alpha=0.33)(conv2) m2=MaxPooling2D((3,3),strides=(3,3))(l2) d2=Dropout(0.25)(m2) #2 conv3=ZeroPadding2D(padding=(1,1))(d2) conv3=Convolution2D(64,3,3,border_mode='same',init='glorot_uniform')(conv3) #model.add(Activation('relu')) l3=LeakyReLU(alpha=0.33)(conv3) conv4=ZeroPadding2D(padding=(1,1))(l3) conv4=Convolution2D(64,3,3,border_mode='same',init='glorot_uniform')(conv4) #model.add(Activation('relu')) l4=LeakyReLU(alpha=0.33)(conv4) m4=MaxPooling2D((3,3),strides=(3,3))(l4) d4=Dropout(0.25)(m4) #3 conv5=ZeroPadding2D(padding=(1,1))(d4) conv5=Convolution2D(128,3,3,border_mode='same',init='glorot_uniform')(conv5) #model.add(Activation('relu')) l5=LeakyReLU(alpha=0.33)(conv5) conv6=ZeroPadding2D(padding=(1,1))(l5) conv6=Convolution2D(128,3,3,border_mode='same',init='glorot_uniform')(conv6) #model.add(Activation('relu')) l6=LeakyReLU(alpha=0.33)(conv6) m6=MaxPooling2D((3,3),strides=(3,3))(l6) d6=Dropout(0.25)(m6) #4 conv7=ZeroPadding2D(padding=(1,1))(d6) conv7=Convolution2D(256,3,3,border_mode='same',init='glorot_uniform')(conv7) #model.add(Activation('relu')) l7=LeakyReLU(alpha=0.33)(conv7) conv8=ZeroPadding2D(padding=(1,1))(l7) conv8=Convolution2D(256,3,3,border_mode='same',init='glorot_uniform')(conv8) #model.add(Activation('relu')) l8=LeakyReLU(alpha=0.33)(conv8) g=GlobalMaxPooling2D()(l8) print("g=",g) #g1=Flatten()(g) lstm1=LSTM( input_shape=(40,80), output_dim=256, activation='tanh', return_sequences=False)(inp) dl1=Dropout(0.3)(lstm1) den1=Dense(200,activation="relu")(dl1) #model.add(Activation('relu')) #l11=LeakyReLU(alpha=0.33)(d11) dl2=Dropout(0.3)(den1) #lstm2=LSTM( #256,activation='tanh', #return_sequences=False)(lstm1) #dl2=Dropout(0.5)(lstm2) print("dl2=",dl1) g2=concatenate([g,dl2],axis=1) d10=Dense(1024)(g2) #model.add(Activation('relu')) l10=LeakyReLU(alpha=0.33)(d10) l10=Dropout(0.5)(l10) l11=Dense(n_classes,activation='softmax')(l10) model=Model(input=inp,outputs=l11) model.summary() #编译model adam=keras.optimizers.Adam(lr=0.0005,beta_1=0.95,beta_2=0.999,epsilon=1e-08) #adam=keras.optimizers.Adam(lr=0.001,beta_1=0.95,beta_2=0.999,epsilon=1e-08) #sgd=keras.optimizers.SGD(lr=0.001,decay=1e-06,momentum=0.9,nesterov=False) #reduce_lr=ReduceLROnPlateau(monitor='loss',factor=0.1,patience=2,verbose=1,min_lr=0.00000001,mode='min') model.compile(loss='categorical_crossentropy',optimizer=adam,metrics=['accuracy']) returnmodel
补充知识:keras中如何将不同的模型联合起来(以cnn/lstm为例)
可能会遇到多种模型需要揉在一起,如cnn和lstm,而我一般在keras框架下开局就是一句
model=Sequential()
然后model.add,model.add,......到最后
model.compile(loss=["mae"],optimizer='adam',metrics=[mape])
这突然要把模型加起来,这可怎么办?
以下示例代码是将cnn和lstm联合起来,先是由cnn模型卷积池化得到特征,再输入到lstm模型中得到最终输出
importos importkeras os.environ['TF_CPP_MIN_LOG_LEVEL']='3' fromkeras.modelsimportModel fromkeras.layersimport* frommatplotlibimportpyplot os.environ['TF_CPP_MIN_LOG_LEVEL']='2' fromkeras.layersimportDense,Dropout,Activation,Convolution2D,MaxPooling2D,Flatten fromkeras.layersimportLSTM defdesign_model(): #designnetwork inp=Input(shape=(11,5)) reshape=Reshape((11,5,1))(inp) conv1=Convolution2D(32,3,3,border_mode='same',init='glorot_uniform')(reshape) print(conv1) l1=Activation('relu')(conv1) conv2=Convolution2D(64,3,3,border_mode='same',)(l1) l2=Activation('relu')(conv2) print(l2) m2=MaxPooling2D(pool_size=(2,2),border_mode='valid')(l2) print(m2) reshape1=Reshape((10,64))(m2) lstm1=LSTM(input_shape=(10,64),output_dim=30,activation='tanh',return_sequences=False)(reshape1) dl1=Dropout(0.3)(lstm1) #den1=Dense(100,activation="relu")(dl1) den2=Dense(1,activation="relu")(dl1) model=Model(input=inp,outputs=den2) model.summary()#打印出模型概况 adam=keras.optimizers.Adam(lr=0.001,beta_1=0.95,beta_2=0.999,epsilon=1e-08) model.compile(loss=["mae"],optimizer=adam,metrics=['mape']) returnmodel model=design_model() history=model.fit(train_x,train_y,epochs=epochs,batch_size=batch_size,validation_data=[test_x,test_y],verbose=2,shuffle=True) ##saveLeNet_model_filesaftertrain model.save('model_trained.h5')
以上示例代码中cnn和lstm是串联即cnn输出作为lstm的输入,一条路线到底
如果想实现并联,即分开再汇总到一起
可用concatenate函数把cnn的输出端和lstm的输出端合并起来,后面再接上其他层,完成整个模型图的构建。
g2=concatenate([g,dl2],axis=1)
总结一下:
这是keras框架下除了Sequential另一种函数式构建模型的方式,更有灵活性,主要是在模型最后通过model=Model(input=inp,outputs=den2)来确定整个模型的输入和输出
以上这篇在Keras中CNN联合LSTM进行分类实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。