pytorch实现特殊的Module--Sqeuential三种写法
我就废话不多说了,直接上代码吧!
#-*-coding:utf-8-*- #@Time:2019/7/113:34 #@Author:XiaoMa importtorchast fromtorchimportnn #Sequential的三种写法 net1=nn.Sequential() net1.add_module('conv',nn.Conv2d(3,3,3))#Conv2D(输入通道数,输出通道数,卷积核大小) net1.add_module('batchnorm',nn.BatchNorm2d(3))#BatchNorm2d(特征数) net1.add_module('activation_layer',nn.ReLU()) net2=nn.Sequential(nn.Conv2d(3,3,3), nn.BatchNorm2d(3), nn.ReLU() ) fromcollectionsimportOrderedDict net3=nn.Sequential(OrderedDict([ ('conv1',nn.Conv2d(3,3,3)), ('bh1',nn.BatchNorm2d(3)), ('al',nn.ReLU()) ])) print('net1',net1) print('net2',net2) print('net3',net3) #可根据名字或序号取出子module print(net1.conv,net2[0],net3.conv1)
输出结果:
net1Sequential( (conv):Conv2d(3,3,kernel_size=(3,3),stride=(1,1)) (batchnorm):BatchNorm2d(3,eps=1e-05,momentum=0.1,affine=True,track_running_stats=True) (activation_layer):ReLU() ) net2Sequential( (0):Conv2d(3,3,kernel_size=(3,3),stride=(1,1)) (1):BatchNorm2d(3,eps=1e-05,momentum=0.1,affine=True,track_running_stats=True) (2):ReLU() ) net3Sequential( (conv1):Conv2d(3,3,kernel_size=(3,3),stride=(1,1)) (bh1):BatchNorm2d(3,eps=1e-05,momentum=0.1,affine=True,track_running_stats=True) (al):ReLU() ) Conv2d(3,3,kernel_size=(3,3),stride=(1,1)) Conv2d(3,3,kernel_size=(3,3),stride=(1,1)) Conv2d(3,3,kernel_size=(3,3),stride=(1,1))
以上这篇pytorch实现特殊的Module--Sqeuential三种写法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。