Python 学习教程之networkx
networkx是Python的一个包,用于构建和操作复杂的图结构,提供分析图的算法。图是由顶点、边和可选的属性构成的数据结构,顶点表示数据,边是由两个顶点唯一确定的,表示两个顶点之间的关系。顶点和边也可以拥有更多的属性,以存储更多的信息。
对于networkx创建的无向图,允许一条边的两个顶点是相同的,即允许出现自循环,但是不允许两个顶点之间存在多条边,即出现平行边。边和顶点都可以有自定义的属性,属性称作边和顶点的数据,每一个属性都是一个Key:Value对。
一,创建图
在创建图之前,需要导入networkx模块,通常设置别名为nx;如果创建的图中,顶点之间的边没有方向,那么该图称作无向图。在创建图时,可以通过help(g)来获得图的帮助文档。
importnetworkxasnx
g=nx.Graph()#创建空的无向图
g=nx.DiGraph()#创建空的有向图
二,图的顶点
图中的每一个顶点Node都有一个关键的ID属性,用于唯一标识一个节点,ID属性可以整数或字符类型;顶点除了ID属性之外,还可以自定义其他的属性。
1,向图中增加顶点
在向图中增加顶点时,可以一次增加一个顶点,也可以一次性增加多个顶点,顶点的ID属性是必需的。在添加顶点之后,可以通过g.nodes()函数获得图的所有顶点的视图,返回的实际上NodeView对象;如果为g.nodes(data=True)的data参数设置为true,那么返回的是NodeDataView对象,该对象不仅包含每个顶点的ID属性,还包括顶点的其他属性。
g.add_node(1) g.add_nodes_from([2,3,4]) g.nodes() #NodeView((1,2,3,4))
在向图中添加顶点时,除ID属性之外,也可以向顶点中增加自定义的属性,例如,名称属性,权重属性:
>>>g.add_node(1,name='n1',weight=1) >>>g.add_node(2,name='n2',weight=1.2)
2,查看顶点的属性
通过属性_node获得图的所有顶点和属性的信息,_node属性返回的是一个字典结构,字典的Key属性是顶点的ID属性,Value属性是顶点的其他属性构成的一个字典。
>>>g._node {1:{'name':'n1','weight':1},2:{'name':'n2','weight':1.2},3:{},4:{}} >>>g.nodes(data=True)
可以通过顶点的ID属性来查看顶点的其他属性:
>>>g.node[1] {'name':'n1','weight':1} >>>g.node[1]['name'] 'n1new'
通过g.nodes(),按照特定的条件来查看顶点:
>>>list(g.nodes(data=True)) [(1,{'time':'5pm'}),(3,{'time':'2pm'})]
3,删除顶点
通过remove函数删除图的顶点,由于顶点的ID属性能够唯一标识一个顶点,通常删除顶点都需要通过传递ID属性作为参数。
g.remove_node(node_ID) g.remove_nodes_from(nodes_list)
4,更新顶点
更新图的顶点,有两种方式,第一种方式使用字典结构的_update函数,第二种方式是通过索引来设置新值:
>>>g._node[1].update({'name':'n1new'}) >>>g.node[1]['name']='n1new' {1:{'name':'n1new','weight':1},2:{'name':'n2','weight':1.2},3:{},4:{}}
5,删除顶点的属性
使用del命令删除顶点的属性
delg.nodes[1]['room']
6,检查是否存在顶点
检查一个顶点是否存在于图中,可以使用ning方式来判断,也可以使用函数:
g.has_node(n)
三,图的边
图的边用于表示两个顶点之间的关系,因此,边是由两个顶点唯一确定的。为了表示复杂的关系,通常会为边增加一个权重weight属性;为了表示关系的类型,也会设置为边设置一个关系属性。
1,向图中增加边
边是由对应顶点的名称构成的,例如,顶点2和3之间有一条边,记作e=(2,3),通过add_edge(node1,node2)向图中添加一条边,也可以通过add_edges_from(list)向图中添加多条边;在添加边时,如果顶点不存在,那么networkx会自动把相应的顶点加入到图中。
g.add_edge(2,3) g.add_edges_from([(1,2),(1,3)]) g.edges() #EdgeView([(1,2),(1,3),(2,3)])
可以向边中增加属性,例如,权重,关系等:
g.add_edge(1,2,weight=4.7,relationship='renew')
由于在图中,边的权重weight是非常有用和常用的属性,因此,networkx模块内置以一个函数,专门用于在添加边时设置边的权重,该函数的参数是三元组,前两个字段是顶点的ID属性,用于标识一个边,第三个字段是边的权重:
g.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
在增加边时,也可以一次增加多条边,为不同的边设置不同的属性:
g.add_edges_from([(1,2,{'color':'blue'}),(2,3,{'weight':8})])
2,查看边的属性
查看边的属性,就是查看边的数据(data),查看所有边及其属性:
>>>g.edges(data=True) EdgeDataView([(1,2,{}),(1,3,{}),(2,3,{})])
查看特定的边的信息有两种方式:
>>>g[1][2] >>>g.get_edge_data(1,2) {'weight':0.125,'relationship':'renew','color':'blue'}
3,删除边
边是两个顶点的ID属性构成的元组,通过edge=(node1,node2)来标识边,进而从图中找到边:
g.remove_edge(edge) g.remove_edges_from(edges_list)
4,更新边的属性
通过边来更新边的属性,由两种方式,一种是使用update函数,一种是通过属性赋值来实现:
g[1][2]['weight']=4.7 g.edge[1][2]['weight']=4 g[1][2].update({"weight":4.7}) g.edges[1,2].update({"weight":4.7})
5,删除边的属性
通过del命令来删除边的属性
delg[1][2]['name']
6,检查边是否存在
检查一条边是否存在于图中
g.has_edge(1,2)
四,图的属性
图的属性主要是指相邻数据,节点和边。
1,adj
ajd返回的是一个AdjacencyView视图,该视图是顶点的相邻的顶点和顶点的属性,用于显示用于存储与顶点相邻的顶点的数据,这是一个只读的字典结构,Key是顶点,Value是顶点的属性数据。
>>>g.adj[1][2] {'weight':0.125,'relationship':'renew','color':'blue'} >>>g.adj[1] AtlasView({2:{'weight':0.125,'relationship':'renew','color':'blue'},3:{'weight':0.75}})
2,edges
图的边是由边的两个顶点唯一确定的,边还有一定的属性,因此,边是由两个顶点和边的属性构成的:
>>>g.edges EdgeView([(1,2),(1,3),(2,3),(2,4),(3,4)]) >>>g.edges.data() EdgeDataView([(1,2,{'weight':0.125,'relationship':'renew','color':'blue'}), (1,3,{'weight':0.75}), (2,3,{'weight':8}), (2,4,{'weight':1.2}), (3,4,{'weight':0.375})])
EdgeView仅仅提供边的信息,可以通过属性g.edges或函数g.edges()来获得图的边视图。
EdgeDataView提供图的边和边的属性,可以通过EdgeView对象来调用data()函数获得。
3,nodes
图的顶点是顶点和顶点的属性构成的
>>>g.nodes NodeView((1,2,3,4)) >>>g.nodes.data() NodeDataView({1:{'name':'n1new','weight':1},2:{'name':'n2','weight':1.2},3:{},4:{}})
NodeView通过属性g.nodes或函数g.nodes()来获得。
NodeDataView提供图的边和边的属性,可以通过NodeView对象来调用data()函数获得。
4,degree
对于无向图,顶点的度是指跟顶点相连的边的数量;对于有向图,顶点的图分为入度和出度,朝向顶点的边称作入度;背向顶点的边称作出度。
通过g.degree或g.degree()能够获得DegreeView对象,
五,图的遍历
图的遍历是指按照图中各顶点之间的边,从图中的任一顶点出发,对图中的所有顶点访问一次且只访问一次。图的遍历按照优先顺序的不同,通常分为深度优先搜索(DFS)和广度优先搜索(BFS)两种方式。
1,查看顶点的相邻顶点
查看顶点的相邻顶点,有多种方式,例如,以下代码都用于返回顶点1的相邻顶点,g[n]表示图g中,与顶点n相邻的所有顶点:
g[n] g.adj[n] g.neighbors(n)
其中,g.neighbors(n)是g.adj[n]的迭代器版本。
2,查看图的相邻
该函数返回顶点n和相邻的节点信息:
>>>forn,nbrsing.adjacency(): ...print(n) ...print(nbrs)
3,图的遍历
深度优先遍历的算法:
首先以一个未被访问过的顶点作为起始顶点,沿当前顶点的边走到未访问过的相邻顶点;
当当前顶点没有未访问过的相邻顶点时,则回到上一个顶点,继续试探别的相邻顶点,直到所有的顶点都被访问过。
深度优先遍历算法的思想是:从一个顶点出发,一条路走到底;如果此路走不通,就返回上一个顶点,继续走其他路。
广度优先遍历的算法:
从顶点v出发,依次访问v的各个未访问过的相邻顶点;
分别从这些相邻顶点出发依次访问它们的相邻顶点;
广度优先遍历算法的思想是:以v为起点,按照路径的长度,由近至远,依次访问和v有路径相通且路径长度为1,2...,n的顶点。
在进行图遍历时,需要访问顶点的相邻顶点,这需要用到adjacency()函数,例如,g是一个无向图,n是顶点,nbrs是顶点n的相邻顶点,是一个字典结构
forn,nbrsing.adjacency(): print(n,nbrs) fornbr,attrinnbrs.items(): #nbr表示跟n连接的顶点,attr表示这两个点连边的属性集合 print(nbr,attr)
六,绘制Graph
使用networkx模块draw()函数构造graph,使用matplotlib把图显示出来:
nx.draw(g) importmatplotlib.pyplotasplt plt.show()
修改顶点和边的颜色:
g=nx.cubical_graph() nx.draw(g,pos=nx.spectral_layout(g),nodecolor='r',edge_color='b') plt.show()
完整的示例如下面的代码所示:
frommatplotlibimportpyplotasplt importnetworkxasnx g=nx.Graph() g.add_nodes_from([1,2,3]) g.add_edges_from([(1,2),(1,3)]) nx.draw_networkx(g) plt.show()
七,计算每个顶点的PageRank值
在计算每个顶点的PageRank(简称PR)值时,可以使用networkx模块中的pagerank()函数,该函数根据顶点的边和边的权重来计算顶点的PR值:
pagerank(g,alpha=0.85,personalization=None,max_iter=100,tol=1e-06,nstart=None,weight='weight',dangling=None)
常用的参数注释:
g:无向图会被转换为有向图,一条无向边转换为两条又向边
alpha:阻尼参数,默认值是0.85
weight:默认值是weight,表示使用edge的weight属性作为权重,如果没有指定,那么把edge的权重设置为1;
1,举个例子
例如,创建一个有向图,由三个顶点(A、B和C),两条边(A指向B,A指向C),边的权重都是0.5
g=nx.DiGraph() g.add_weighted_edges_from([('A','B',0.5),('A','C',0.5)]) print(nx.pagerank(g)) #{'A':0.259740259292235,'C':0.3701298703538825,'B':0.3701298703538825}
修改边的权重,并查看顶点的PR值:
g['A']['C']['weight']=1 print(nx.pagerank(g)) #{'A':0.259740259292235,'C':0.40692640737443164,'B':0.3333333333333333}
2,查看各个顶点的PR值
根据图来创建PageRank,并查看各个顶点的PageRank值
pr=nx.pagerank(g) #page_rank_value=pr[node] fornode,pageRankValueinpr.items(): print("%s,%.4f"%(node,pageRankValue))