浅谈python中的正则表达式(re模块)
一、简介
正则表达式本身是一种小型的、高度专业化的编程语言,而在python中,通过内嵌集成re模块,程序媛们可以直接调用来实现正则匹配。正则表达式模式被编译成一系列的字节码,然后由用C编写的匹配引擎执行。
二、正则表达式中常用的字符含义
1、普通字符和11个元字符:
普通字符
匹配自身
abc
abc
.
匹配任意除换行符"\n"外的字符(在DOTALL模式中也能匹配换行符
a.c
abc
\
转义字符,使后一个字符改变原来的意思
a\.c;a\\c
a.c;a\c
*
匹配前一个字符0或多次
abc*
ab;abccc
+
匹配前一个字符1次或无限次
abc+
abc;abccc
?
匹配一个字符0次或1次
abc?
ab;abc
^
匹配字符串开头。在多行模式中匹配每一行的开头
^abc
abc
$
匹配字符串末尾,在多行模式中匹配每一行的末尾
abc$
abc
|
或。匹配|左右表达式任意一个,从左到右匹配,如果|没有包括在()中,则它的范围是整个正则表达式
abc|def
abc
def
{}
{m}匹配前一个字符m次,{m,n}匹配前一个字符m至n次,若省略n,则匹配m至无限次
ab{1,2}c
abc
abbc
[]
字符集。对应的位置可以是字符集中任意字符。字符集中的字符可以逐个列出,也可以给出范围,如[abc]或[a-c]。[^abc]表示取反,即非abc。
所有特殊字符在字符集中都失去其原有的特殊含义。用\反斜杠转义恢复特殊字符的特殊含义。
a[bcd]e
abe
ace
ade
()
被括起来的表达式将作为分组,从表达式左边开始没遇到一个分组的左括号“(”,编号+1.
分组表达式作为一个整体,可以后接数量词。表达式中的|仅在该组中有效。(abc){2}
a(123|456)c
abcabc
a456c
这里需要强调一下反斜杠\的作用:
- 反斜杠后边跟元字符去除特殊功能;(即将特殊字符转义成普通字符)
- 反斜杠后边跟普通字符实现特殊功能;(即预定义字符)
- 引用序号对应的字组所匹配的字符串。
a=re.search(r'(tina)(fei)haha\2','tinafeihahafeitinafeihahatina').group() print(a)
结果:
tinafeihahafei
2、预定义字符集(可以写在字符集[...]中)
\d
数字:[0-9]
a\bc
a1c
\D
非数字:[^\d]
a\Dc
abc
\s
匹配任何空白字符:[<空格>\t\r\n\f\v]
a\sc
ac
\S
非空白字符:[^\s]
a\Sc
abc
\w
匹配包括下划线在内的任何字字符:[A-Za-z0-9_]
a\wc
abc
\W
匹配非字母字符,即匹配特殊字符
a\Wc
ac
\A
仅匹配字符串开头,同^
\Aabc
abc
\Z
仅匹配字符串结尾,同$
abc\Z
abc
\b
匹配\w和\W之间,即匹配单词边界匹配一个单词边界,也就是指单词和空格间的位置。例如,'er\b'可以匹配"never"中的'er',但不能匹配"verb"中的'er'。
\babc\b
a\b!bc空格abc空格
a!bc
\B
[^\b]
a\Bbc
abc
这里需要强调一下\b的单词边界的理解:
w=re.findall('\btina','tiantinaaaa') print(w) s=re.findall(r'\btina','tiantinaaaa') print(s) v=re.findall(r'\btina','tian#tinaaaa') print(v) a=re.findall(r'\btina\b','tian#tina@aaa') print(a)
执行结果如下:
[]
['tina']
['tina']
['tina']
3、特殊分组用法:
(?P
分组,除了原有的编号外再指定一个额外的别名
(?P
abcabc
(?P=name)
引用别名为
(?P
1abc1
5abc5
\
引用编号为
(\d)abc\1
1abc1
5abc5
三、re模块中常用功能函数
1、compile()
编译正则表达式模式,返回一个对象的模式。(可以把那些常用的正则表达式编译成正则表达式对象,这样可以提高一点效率。)
格式:
re.compile(pattern,flags=0)
pattern:编译时用的表达式字符串。
flags编译标志位,用于修改正则表达式的匹配方式,如:是否区分大小写,多行匹配等。常用的flags有:
标志
含义
re.S(DOTALL)
使.匹配包括换行在内的所有字符
re.I(IGNORECASE)
使匹配对大小写不敏感
re.L(LOCALE)
做本地化识别(locale-aware)匹配,法语等
re.M(MULTILINE)
多行匹配,影响^和$
re.X(VERBOSE)
该标志通过给予更灵活的格式以便将正则表达式写得更易于理解
re.U
根据Unicode字符集解析字符,这个标志影响\w,\W,\b,\B
importre tt="Tinaisagoodgirl,sheiscool,clever,andsoon..." rr=re.compile(r'\w*oo\w*') print(rr.findall(tt))#查找所有包含'oo'的单词
执行结果如下:
['good','cool']
2、match()
决定RE是否在字符串刚开始的位置匹配。//注:这个方法并不是完全匹配。当pattern结束时若string还有剩余字符,仍然视为成功。想要完全匹配,可以在表达式末尾加上边界匹配符'$'
格式:
re.match(pattern,string,flags=0)
print(re.match('com','comwww.runcomoob').group()) print(re.match('com','Comwww.runcomoob',re.I).group())
执行结果如下:
com
com
3、search()
格式:
re.search(pattern,string,flags=0)
re.search函数会在字符串内查找模式匹配,只要找到第一个匹配然后返回,如果字符串没有匹配,则返回None。
print(re.search('\dcom','www.4comrunoob.5com').group())
执行结果如下:
4com
*注:match和search一旦匹配成功,就是一个matchobject对象,而matchobject对象有以下方法:
- group()返回被RE匹配的字符串
- start()返回匹配开始的位置
- end()返回匹配结束的位置
- span()返回一个元组包含匹配(开始,结束)的位置
- group()返回re整体匹配的字符串,可以一次输入多个组号,对应组号匹配的字符串。
a.group()返回re整体匹配的字符串,
b.group(n,m)返回组号为n,m所匹配的字符串,如果组号不存在,则返回indexError异常
c.groups()groups()方法返回一个包含正则表达式中所有小组字符串的元组,从1到所含的小组号,通常groups()不需要参数,返回一个元组,元组中的元就是正则表达式中定义的组。
importre a="123abc456" print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(0))#123abc456,返回整体 print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(1))#123 print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(2))#abc print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(3))#456 ###group(1)列出第一个括号匹配部分,group(2)列出第二个括号匹配部分,group(3)列出第三个括号匹配部分。###
4、findall()
re.findall遍历匹配,可以获取字符串中所有匹配的字符串,返回一个列表。
格式:
re.findall(pattern,string,flags=0)
p=re.compile(r'\d+') print(p.findall('o1n2m3k4'))
执行结果如下:
['1','2','3','4']
importre tt="Tinaisagoodgirl,sheiscool,clever,andsoon..." rr=re.compile(r'\w*oo\w*') print(rr.findall(tt)) print(re.findall(r'(\w)*oo(\w)',tt))#()表示子表达式
执行结果如下:
['good','cool']
[('g','d'),('c','l')]
5、finditer()
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。找到RE匹配的所有子串,并把它们作为一个迭代器返回。
格式:
re.finditer(pattern,string,flags=0)
iter=re.finditer(r'\d+','12drumm44ersdrumming,11...10...') foriiniter: print(i) print(i.group()) print(i.span())
执行结果如下:
<_sre.SRE_Matchobject;span=(0,2),match='12'>
12
(0,2)
<_sre.SRE_Matchobject;span=(8,10),match='44'>
44
(8,10)
<_sre.SRE_Matchobject;span=(24,26),match='11'>
11
(24,26)
<_sre.SRE_Matchobject;span=(31,33),match='10'>
10
(31,33)
6、split()
按照能够匹配的子串将string分割后返回列表。
可以使用re.split来分割字符串,如:re.split(r'\s+',text);将字符串按空格分割成一个单词列表。
格式:
re.split(pattern,string[,maxsplit])
maxsplit用于指定最大分割次数,不指定将全部分割。
print(re.split('\d+','one1two2three3four4five5'))
执行结果如下:
['one','two','three','four','five','']
7、sub()
使用re替换string中每一个匹配的子串后返回替换后的字符串。
格式:
re.sub(pattern,repl,string,count)
importre text="JGoodisahandsomeboy,heiscool,clever,andsoon..." print(re.sub(r'\s+','-',text))
执行结果如下:
JGood-is-a-handsome-boy,-he-is-cool,-clever,-and-so-on...
其中第二个函数是替换后的字符串;本例中为'-'
第四个参数指替换个数。默认为0,表示每个匹配项都替换。
re.sub还允许使用函数对匹配项的替换进行复杂的处理。
如:re.sub(r'\s',lambdam:'['+m.group(0)+']',text,0);将字符串中的空格''替换为'[]'。
importre text="JGoodisahandsomeboy,heiscool,clever,andsoon..." print(re.sub(r'\s+',lambdam:'['+m.group(0)+']',text,0))
执行结果如下:
JGood[]is[]a[]handsome[]boy,[]he[]is[]cool,[]clever,[]and[]so[]on...
8、subn()
返回替换次数
格式:
subn(pattern,repl,string,count=0,flags=0)
print(re.subn('[1-2]','A','123456abcdef')) print(re.sub("g.t","have",'IgetA,IgotB,IgutC')) print(re.subn("g.t","have",'IgetA,IgotB,IgutC'))
执行结果如下:
('AA3456abcdef',2)
IhaveA, IhaveB,IhaveC
('IhaveA, IhaveB,IhaveC',3)
四、一些注意点
1、re.match与re.search与re.findall的区别:
re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配。
a=re.search('[\d]',"abc33").group() print(a) p=re.match('[\d]',"abc33") print(p) b=re.findall('[\d]',"abc33") print(b)
执行结果:
3
None
['3','3']
2、贪婪匹配与非贪婪匹配
*?,+?,??,{m,n}? 前面的*,+,?等都是贪婪匹配,也就是尽可能匹配,后面加?号使其变成惰性匹配
a=re.findall(r"a(\d+?)",'a23b') print(a) b=re.findall(r"a(\d+)",'a23b') print(b)
执行结果:
['2']
['23']
a=re.match('<(.*)>','title
').group() print(a) b=re.match('<(.*?)>','
title
').group() print(b)
执行结果:
title
a=re.findall(r"a(\d+)b",'a3333b')
print(a)
b=re.findall(r"a(\d+?)b",'a3333b')
print(b)
a=re.findall(r"a(\d+)b",'a3333b')
print(a)
b=re.findall(r"a(\d+?)b",'a3333b')
print(b)
执行结果如下:
['3333']
['3333']
#######################
这里需要注意的是如果前后均有限定条件的时候,就不存在什么贪婪模式了,非匹配模式失效。
3、用flags时遇到的小坑
print(re.split('a','1A1a2A3',re.I))#输出结果并未能区分大小写
这是因为re.split(pattern,string,maxsplit,flags)默认是四个参数,当我们传入的三个参数的时候,系统会默认re.I是第三个参数,所以就没起作用。如果想让这里的re.I起作用,写成flags=re.I即可。
五、正则的小实践
1、匹配电话号码
p=re.compile(r'\d{3}-\d{6}') print(p.findall('010-628888'))
2、匹配IP
re.search(r"(([01]?\d?\d|2[0-4]\d|25[0-5])\.){3}([01]?\d?\d|2[0-4]\d|25[0-5]\.)","192.168.1.1")
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持毛票票。