Prim的邻接表表示的MST
它类似于先前的算法。这里唯一的区别是,图G(V,E)用邻接表表示。
时间复杂度邻接表的表示形式为O(ElogV)。
输入输出
Input: The cost matrix:Output: Edge: A--B And Cost: 1 Edge: B--E And Cost: 2 Edge: A--C And Cost: 3 Edge: A--D And Cost: 4 Edge: E--F And Cost: 2 Edge: F--G And Cost: 3 Total Cost: 15
算法
prims(g: Graph, start)
输入- 图形g和名为'start'的种子顶点
输出- 添加边后的树。
Begin create two set B, N add the start node in B set. for all vertices u in graph g do add u in the set N done while B ≠ N do min := ∞ for all vertices u in graph g do if u is in the set B then for all vertices v which are adjacent with u do if v is in (N – B) then if min > cost of uv edge then min := cost of uv edge parent := u node := v done done insert node in the B set add the edge starting from parent to node in the tree done return the tree End
示例
#include<iostream> #include<list> #include<set> using namespace std; typedef struct nodes { int dest; int cost; }node; class Graph { int n; list<node> *adjList; private: void showList(int src, list<node> lt) { list<node> :: iterator i; node tempNode; for(i = lt.begin(); i != lt.end(); i++) { tempNode = *i; cout << "(" << src << ")---("<<tempNode.dest << "|"<<tempNode.cost<<") "; } cout << endl; } public: Graph() { n = 0; } Graph(int nodeCount) { n = nodeCount; adjList = new list<node>[n]; } void addEdge(int source, int dest, int cost) { node newNode; newNode.dest = dest; newNode.cost = cost; adjList[source].push_back(newNode); } void displayEdges() { for(int i = 0; i<n; i++) { list<node> tempList = adjList[i]; showList(i, tempList); } } friend Graph primsMST(Graph g, int start); }; set<int> difference(set<int> first, set<int> second) { set<int> :: iterator it; set<int> res; for(it = first.begin(); it != first.end(); it++) { if(second.find(*it) == second.end()) res.insert(*it); //add those item which are not in the second list } return res; //the set (first-second) } Graph primsMST(Graph g, int start) { int n = g.n; set<int> B, N, diff; Graph tree(n); //make tree with same node as graph B.insert(start); //insert start node in the B set for(int u = 0; u<n; u++) { N.insert(u); //add all vertices in the N set } while(B != N) { int min = 9999; //set as infinity int v, par; diff = difference(N, B); //find the set N - B for(int u = 0; u < n; u++) { if(B.find(u) != B.end()) { list<node>::iterator it; for(it = g.adjList[u].begin(); it != g.adjList[u].end(); it++) { if(diff.find(it->dest) != diff.end()) { if(min > it->cost) { min = it->cost; //update cost par = u; v = it->dest; } } } } } B.insert(v); tree.addEdge(par, v, min); tree.addEdge(v, par, min); } return tree; } main() { Graph g(7), tree(7); g.addEdge(0, 1, 1); g.addEdge(0, 2, 3); g.addEdge(0, 3, 4); g.addEdge(0, 5, 5); g.addEdge(1, 0, 1); g.addEdge(1, 3, 7); g.addEdge(1, 4, 2); g.addEdge(2, 0, 3); g.addEdge(2, 4, 8); g.addEdge(3, 0, 4); g.addEdge(3, 1, 7); g.addEdge(4, 1, 2); g.addEdge(4, 2, 8); g.addEdge(4, 5, 2); g.addEdge(4, 6, 4); g.addEdge(5, 0, 5); g.addEdge(5, 4, 2); g.addEdge(5, 6, 3); g.addEdge(6, 4, 4); g.addEdge(6, 5, 3); tree = primsMST(g, 0); tree.displayEdges(); }
输出结果
Edge: A--B And Cost: 1 Edge: B--E And Cost: 2 Edge: A--C And Cost: 3 Edge: A--D And Cost: 4 Edge: E--F And Cost: 2 Edge: F--G And Cost: 3 Total Cost: 15